These math problems are on the volume of diluent and the flow rate for the infusion. (mL is rounded to tenth if over 1) Answers

1. An IV of an antibiotic of 750 mg in 3 mL was ordered by the doctor to be diluted to a total of 25 mL of NS to infuse over 40 minutes.
a. What is the volume of diluent _22 \qquad mL
b. What is the flow rate \qquad 37.5 \qquad $\mathrm{mL} / \mathrm{hr}$
2. 1.5 grams $/ 2 \mathrm{~mL}$ of an antibiotic is to be diluted to a total of 40 mL of NS and administered over 40 minutes.
a. What is the volume of diluent \qquad 38 \qquad mL
b. What is the flow rate \qquad 60 $\mathrm{mL} / \mathrm{hr}$
3. Over 35 minutes, a dosage of 20 mg in 2 mL has been ordered and must be diluted to 30 mL .
a. What is the volume of diluent _28 \qquad mL
b. What is the flow rate \qquad 51.4 $\mathrm{mL} / \mathrm{hr}$
4. $500,000 \mathrm{U}$ of an antibiotic preparation with a volume of 4 mL is ordered by the doctor. It must be diluted to 50 ML D5 $\frac{1}{2}$ NS to infuse in 1 hr .
a. What is the volume of diluent \qquad 46 \qquad mL
b. What is the flow rate \qquad 50 \qquad $\mathrm{mL} / \mathrm{hr}$
5. 200 mg in 4 mL is to be diluted to 50 mL and administered over 70 minutes.
a. What is the volume of diluent \qquad 46 \qquad mL
b. What is the flow rate \qquad 42.9 \qquad $\mathrm{mL} / \mathrm{hr}$
6. A dosage of 25 mg in 5 mL is ordered diluted to 40 mL and needs to be administered in 50 min .
a. What is the volume of diluent \qquad 35__mL
b. What is the flow rate \qquad 48 \qquad $\mathrm{mL} / \mathrm{hr}$

1a. mL	$25 \mathrm{~mL}-3 \mathrm{~mL}=22 \mathrm{~mL}$
1b. $\mathrm{mL} / \mathrm{hr}$	$25 \mathrm{~mL} / 40 \mathrm{mn} \times 60 \mathrm{mn} / 1 \mathrm{hr}=1500 / 40=37.5 \mathrm{~mL}$
2a. mL	\| $40 \mathrm{~mL}-2 \mathrm{~mL}=38 \mathrm{~mL}$
2b. mL/hr	\| $40 \mathrm{~mL} / 40 \mathrm{mn} \times 60 \mathrm{mn} / 1 \mathrm{hr}=2400 / 40=60 \mathrm{~mL}$
3a. mL	\| $30 \mathrm{~mL}-2 \mathrm{~mL}=28 \mathrm{~mL}$
3b. mL/hr	\| $30 \mathrm{~mL} / 35 \mathrm{mn} \times 60 \mathrm{mn} / 1 \mathrm{hr}=1800 / 35=51.4285=51.4 \mathrm{~mL}$
4a. mL	\| $50 \mathrm{~mL}-4 \mathrm{~mL}=46 \mathrm{~mL}$
4b. $\mathrm{mL} / \mathrm{hr}$	\| $50 \mathrm{~mL} / 1 \mathrm{hr}=50 \mathrm{~mL}$
5a. mL	\| $50 \mathrm{~mL}-4 \mathrm{~mL}=46 \mathrm{~mL}$
5b. mL/hr	\| $50 \mathrm{~mL} / 70 \mathrm{mn} \times 60 \mathrm{mn} / 1 \mathrm{hr}=3000 / 70=42.8571=42.9 \mathrm{~mL}$
6a. mL	\| $40 \mathrm{~mL}-5 \mathrm{~mL}=35 \mathrm{~mL}$
6b. $\mathrm{mL} / \mathrm{hr}$	\| $40 \mathrm{~mL} / 50 \mathrm{mn} \times 60 \mathrm{mn} / 1 \mathrm{hr}=2400 / 50=48 \mathrm{~mL}$

